CHAPTER 5 -SOFTWARE ENGINEERING

What is Software Engineering?

(Engineering means applying well-defined concepts, methodologies, scientific principles and methods)
e |tisa structured, systematicapproach forthe design, developmentand maintenance of software systems.

Need for Software Engineering?

e Modern day software are large and complex, handles large amount of data.
e In mostcases, software is notdelivered ontime ordid not conform to the specifications provided by Customer.

Importance of Software Engineering?

1. Correct Specifications —As large software systems are complex, and have numerous functionality, itis very important
to devise its specificationsin ascientific, methodical manner.

2. Scalability scope — Software should be scalable with the current design. And to design such software, scientific
methodology should be adapted.

3. Cost Control - If software not designed using scientific methodology, faults may occur at later stages. Afault detected
later costs much higheras compared to early fault-detection.

4. Quality - Engineering methodology ensures that correct problem and specifications for the new software are
determined. Thisleadsto efficient design and overallenhanced quality of the software.

Software Process Activities/SDLC (Software development Life Cycle)

o [treferstoset of logically related activities, which are carried out ina systematicorderthatleads tothe production of
‘the software tobe delivered’.
e Four important activitiesin SDLC are:
1. Software Specification (Requirement Engineering)
e This activity is responsible for defining the main functionalities of the software as perthe customer’s
requirements and expectations.
e It also defined constraints onits operation.
eltiscarried outin fourphases:
(i) Feasibilitystudy
e Cost estimation of proposed software.
e Determineswhetherthe software will be cost-effective from a business point of view.
e Economic, technical and operational feasibility of the project.
(ii) Requirements Elicitation and analysis
o Determiningthe System requirements, by studying existing system and discussion with potential users.
(iii) Requirement Specification
e Determinedrequirements are documented for user (functionality features) requirements and system
(non-functional, e.g. security, performance, interface etc.) requirements.
(iv) Requirements Validation
e Determine whetherthe requirements defined are complete and all user problems, needs and
expectations etc, have been taken care of.

2. Software Design and Implementation
e This activityisresponsibleforthe design and programming of proposed software.
e Sub activities carried outin this phase are:

(i) Architectural and abstract design
The sub-system of system and their relationships are identified.
(ii) Interface design
The interface is designed and documented for each sub-system.
(iii) Data Structure and algorithm design
e The required datastructures usedinthe systemimplementation are designed.
e The algorithms usedto provide services are designed.

(iv) Programming and Implementation
e Theprogrammingisdone with determined datastructures and algorithms as perthe design.
e The program codeis implemented.

3. Software Verification and Validation
e This activityisresponsibleforensuring that software conforms to all the specifications and works as perthe
proposeddesign.
¢ Verification— It meansthat set of activities thatare carried out to confirm that the software correctly
implements the specificfunctionality.
¢ Validation— It means thatthe set of activities that ensure that the software that has been builtis satisfying the
customer’s requirements.
e For verification and validation, system testingis carried outin three forms:
o System components are tested — For components, usually, components developmentand testingare
carried out simultaneously with one another.
¢ Integrated components of the system are tested together.
e Entire systemis testedinactual conditions.

4. Software Evolution/Software Maintenance
This activity ensures that:

(i) The developed software meets the customer requirements.
(ii) The software design ensures adaptability and scalability, i.e., it must evolve to meet changing customer
needs.

Software Process Model

- ltisa simplified representation of asoftware process.
- Three GenericModels:

1. The Waterfall model

2. Evolutionary model

3. Component-based model

The Waterfall Model

- The waterfall modelisalinearand sequential approach of software development where software develops systematically
from one phase to another in a downward fashion. This model is divided into different phases and the output of one
phase isused as the input of the next phase. It means thatevery phase has to be completed before the next phase starts
and there is no overlapping of the phases.

- Most suitable for projects where:

1. Requirements are clearly determined.

2. Each phase fully completes and makes available its output as input of next phase.

- This model consist of 5 phases:

: Requirements definitions ,1

t f
\ System and software design |

tL—“‘jv

,\ Implementation and unit testing ;j

.

-
(_; Operation and maintenance

A

N s e ————

7 »‘
K_L Integration and system testing '1

Figure 5.1 The Waterfall model.

1. Requirement specification
- Requirements are gathered.
- Estimating Project costs, risks and schedule.
2. Analysis and System Design
- Design the overall software architecture.
- Identifying fundamental software system components and their relationships.
3. Implementation and unit testing
- Software design is realised as a set of software components through programming, coding and documentation.
- Each component tested along with its development.
4. Integration and System testing

components are integrated and tested as a complete system.

5. Operation and Maintenance
- System is delivered and deployed for the client.
- The real and practical use of the software system begins.

Advantages of Waterfall Model

1

w

Departmentalisation: It divides the whole processintodepartments. Thisallows for separate schedules and deadlines
for each department.

Easy to understand and explainable Model

It is easy to manage model as each phase has specific deliverables and a review process.

No overlapping of phases = makes this model simple.

Disadvantages of Waterfall Model

No estimation of time and cost: not give idea of estimated time and cost for each phase of the development process.
Difficultto incorporate changes: once an applicationisinthe testingstage, it is very difficult to go back and change
something.

Not for complex systems: Nota good model forlarge and complex software system, as they have many overlapping
modules.

V-Model

-

< Requirements v Acceptance
: analysis testing
[E

Figure 5.2 The V-Model.

- avariation of waterfall model.

- The processes/phases are same as waterfall model, but phases are bent upwards after the implementation phase, to
form the typical V-Shape.

- This model allows parallel execution of activities.

The Evolutionary Model

Itisa rapid-software development model wherean initial software implementation is rapidly developed from very abstract

specifications, which is then iteratively modified according to the user’s appraisal of the software
- Itis therefore also called Prototype model.

- Most suitable for projects where:
1. High technical risks are involved.
2. Timeline is aggressive.

Concurrent
activities

Initial version

\
\

1

|

|

i

‘ Intermediate ‘ !
version |

|

|

1

]

1

1

Outline
description

Final version

Figure 5.3 Evolutionary model.

Advantages of Evolutionary Model
(i) It reduces risk of failure, as potential risks can be identified early by continuous appraisal of the software
implementation and corrective steps can be taken.
(i) The development takes place with combined contribution of the development team and the client.
(iii) User gets a fair idea of final product’s working as a working model of the system is provided, the user get a
better understanding of the system being developed and can suggest changes and modifications.
(iv) User feedback is available at an early stage leading to better solution.

Disadvantages of Evolutionary Model
(i) If changes suggested are too many then it may disturb the rhythm of the development team.
(ii) Too many changes may increase the complexity of the system. Also, the scope of the system may expand beyond
original plans.
(iii) Repeatedchanges may increase the cost of development and it may derailthe budgeting of the software system.

Component-based Model

Component/Software component — It is a software element that confirms to a software model and can be independently
deployed and composed without modification according to a composition standard.

- Component-based software development model is a software development process that develops software systems by
selecting appropriate off-the-shelf components and then assembles them with a well-defined software architecture.

- It is based on idea of incorporating and reuse existing software components in current software development if feasible
and possible.

Operation and maintenance]

h

Requirements

Select test
System integration and Component
component deployment deployment

System design

Inspect J [Inspect J

)

Component pool

Figure 5.4 The component-based model. e

Various phasesinthis model are:

1.

Requirement Specification: the basicsoftware specifications (not full specifications) for the new system are
determined.
Component Analysis: From the available software-components pool orlibrary, asearchis made for the
components that can implement specification as per specifications decided for the new system.
Ifa component meets aspecification partly (say about 60-70%), the components may be used.
Requirements modification: The software requirements are re-analysed using information about the available
reusable components.
Systemdesign with reuse:
Two activities:
(i) Systemdesign aftertakingintoaccountthe reusable componentavailable.
(i) If no reusable components are available, the new software (components) may have to be designed.
Developmentand integration:
- The fresh development of the software components takes place for which no reusable components were
found.
- Thenthe freshly developed software components and the reusable systems are integrated to create the
new system.

Advantages of Component-based Model
(i) It reduces the amount of software to be developed.
(i) It also leads to faster delivery of the software.

Disadvantages of Component-based Model
(i) Sometimes requirements are compromised.
(ii) This may lead to a system that does not meet the real (original) needs of users.

Delivery Models

Why delivery models needed?

(a) Changing environment and conditions resultin changesin system requirements (e.g. growthin userbase)
(b) Policies and management priorities may change.
(c) Technologicaladvancement may lead to forced changes.

Deliverymodelsis not just aboutdelivery, butitis about development process that deliversiteratively along with
software development.

Two important delivery models: (i) Incremental delivery model (ii) Spiral development model

Incremental Delivery Model

The Incremental Model is designed, implemented and tested as a series of incremental software builds until the
product is finished. A build consist of pieces of code from various modules that interact together to provide a
specific service or functionality.

Specification
/ x

Design
Specification
/7
7
Implement ’
Design
ya Specification
Testing 2 /7
Implement 9 :
. Design
(Software increment 1) 5
: 7
jiesting Implement

(Software increment 2) /

Testing —— Development

Figure 5.5 Incremental delivery model

- Phases in incremental model are:
1. Determine overall services to be delivered

This phase identifies all types of services that the proposed system needs to deliver.

2. Determine software incremental builds

In order to determine software builds or Software Increments, the following mechanism is carried out:
The customer is asked to prioritise the required services as the ‘most important service(s)’ to the ‘least
important service(s)’.
As per the customer decided priority levels, the number of software-delivery increments (also called
software builds) are defined where each software increment provides each priority level service(s).

(i)
(ii)

Development and delivery of each software incremental build

The following activities are carried out for each software increment, in the order of their priority:

The requirements for each software increment are defined in detail, and thatincrementis developed
using the best suited software process.
Once developed and tested, the software build is delivered and implemented for the client,
integrating it with already installed increments.

The work for next priority software build starts and the whole process is repeated.

(i)
(ii)
(iii)

Advantages of Incremental Delivery Model

CARESIE O

It generates working software quickly. Customers do not have to wait until the entire system is delivered.

It is easier to test and debug during a smaller iteration.

It cost less to change scope and requirements.

There is a lower risk of overall project failure as tested increments are added.
Easier to manage risk because risky pieces are identified and handled first of all.

Disadvantages of Incremental Delivery Model

1. Aftereachsoftwareincrementisaddedwiththe system, the integration testingtotestthe system working as

2. If all requirements are not clearly identified and not aptly prioritised, it may lead to major problems in overall

awhole, is carried out, which increases the testing-load.

system architecture.

The Spiral Model

It combines the iterative nature of prototyping with the systematic approach of waterfall model.

Software is developed in a series of incremental release, where in early stage, prototypes are used and in later
iterations, it becomes a more complete version of the product.

In this model, the sequence of activities takes place withsome backtracking from one activity to another, just like
a spiral —and hence the name.

- Most suitable for large, complex and expensive software systems.

- The following activities are carried out during each phase of spiral model:

(i) Objective setting (First Quadrant) — The objective of the phase are determined and associated risks are

examined.
(ii) Risk Assessment and Reduction (Second Quadrant) — Detailed Analysis of the risk that determined in previous

phase. This phase is also responsible for risk reduction.
(iii) Development and Validation (Third Quadrant) —This phase is for the development and validation of the

next level of the product after resolving the identified risks.
(iv) Review and Planning (Fourth Quadrant) — During this phase, the results achieved so far are reviewed with
the customer. And the planning for the next iteration also takes place.

| Risk analysis J— Testing and |
’ execution

and evaluation /

Planning and |
analysis |

Objective identification
and constraints

Figure 5.6 The four phases of spiral model

%k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k

