Chapter 10 — Interface Python with MySQL

In order to connect to a database from within Python, you need a library(mysql connector) that
provides connectivity functionality.

Steps for Creating Database Connectivity Applications

There are mainly seven steps that must be followed in order to create a database connectivity
application.

Step 1: Start Python.

Step 2: Import the packages required for database programming.
Step 3: Open a connection to database.

Step 4 : Create a cursor instance.

Step 5: Execute a query.

Step 6 : Extract data from result set.

Step 7 : Clean up the environment.

Step 1. Start Python

- Start Python’s editor where you can create your Python scripts.

Step 2. Import mysql.connector Package

- First of all you need to import mysql.connector package in your Python scripts. For this, write
import command as shown below:

import mysql.connector
or
import mysql.connector as sqLtor

Step 3: Open a connection to database.

- The connect() function of mysqgl.connector establishes connection to a MySQL database and
requires four parameters, which are:

<connection-object> = mysql.connector.connect(host = <host-name> , user = <username> ,
passwd = <password> , database = <database>)

e.g.
For example :) loginid and password of your MySQL database
import mysql.connector as sqltor / 3,
The connection ——> Mycon = sqltor.connect(host = "localhost"”, user = "root", passwd = "MyPass",
N _ € $3)
object database = “test”) ot MSIREIT dlidbuzse

The above command will establish connection to MySQL database with useras “root”, password
as “MyPass” and to the MySQL database namely test which exists on the MySQL.

Page 1|7

- You can also check for successful connection using function is_connected() with connected
object, which returns True , if connection is successful.
e.g.

The same connection object with which we

. . connected to MySOL database
if mycon.is_connected():

print('Successfully Connected to MySQL database’)

Step 4 : Create a cursor instance.

- When we connect to a database from within a script/program, then the query gets sent to the
server, where it gets executed, and the resultset (the set of records retrieved as per query) is sent
over the connection to you, in one burst of activity, i.e. in one go. And in order to do the processing
of data row by row, a special control structure is used, which is called Database Cursor.

- Syntax:

<cursorobject> = <connectedobject>.cursor()
- E.g.

cursor =mycon.cursor()
Cursor object created _/ Connection object

Since we established database connection through connection object mycon earlier, we have
created a cursor object using the same connection object mycon.

Step 5 : Execute a query

- Onceyou have created a cursor, you can execute SQL query using execute() function with cursor
object as per following syntax:

<cursorobject>.execute(<sql query string>)

- Eg.

cursor.execute("select * fromdata™)

cursor object name —/ \—— Give SQL query in quotes

The above code will execute the given SQL query and store the retrieved records(i.e. , the resultset)
in the cursor object (namely cursor) which you can then use in your program/scripts as required.

Step 6 : Extract data from result set.
- Once the result of query is available in the form of a resultset stored in a cursor object, you can
extract data from the resultset using any of the following fetch() functions.
(i) <data>= <cursor>.fetchall() - It will return all the records retrieved as per query in a tuple
form.

(ii) <data> = <cursor>.fetchone() - It will return one record from the resultset as a tuple or a
list. First time it will return the first record, next time it will fetch the next record and so
on.

This method returns one record as a tuple : if there are no more records then it returns
None.

Page 2|7

(iii) <data>=<cursor>.fetchmany(<n>) - This method accepts number of records to fetch and
returns a tuple where eachrecord itself is a tuple.

(iv) <variable>=<cursor>.rowcount — The rowcount is a property of cursor object that returns
the number of rows retrieved from the cursor so far.

For Example,

Table student of MySQL database test

Rolino Name Marks Grade | Section Project
101 Ruhani 76.80 A A Pending
102 George 71.20 B A Submitted
103 Simran 81.20 A B Evaluated
104 Ali 61.20 B C Assigned
105 Kushal 51.60 © C Evaluated
106 Arsiya 91.60 A+ B Submitted
107 Raunak 32.50 F B Submitted

Following code examples assume that the connection to the database has been established
using connect() method of mysql.connector as discussed in earlier steps. That is, all the
following code examples of fetch functions have folioving code pre-executed for them :

import mysql.connector as sqltor

mycon = sqltor.connect(host = "localhost", user = "root", passwd = "MyPass",
database = "test")
if mycon.is_connected() == False:
print('Error connecting to MySQL database')

The SQL query retrieves all the data of
cursor = mycon.cursor() table student of database test

cursor.execute("select * from student")

(i) The fetchall() method

database connected established and cursor object created
st = "select * from student where marks > %s" %(70,)

P s s S S,

NOTE
cursor.execute(st)

data = cursor.fetchall() Do not forget to enclose place-
for row in data : holder %s i qu9tes for string
. parameters in string template.
print(row)

(101, ‘Ruhani’, Decimal(‘76.80’), ‘A’, ‘A’, ‘Pending’)

(102, ‘George’, Decimal(‘71.20’), ‘B’, ‘A’, ‘Submitted’)
(103, ‘Simran’, Decimal(‘81.20’), ‘A’, ‘B’, ‘Evaluated’)
(106, ‘Arsiya’, Decimal(‘91.60’), ‘A+’, ‘B’, ‘sSubmitted’)

Page 3|7

(ii) The fetchmany() method

The fetchmany(<n>) method will return only the <n> number of rows from the resultset in the
form of a tuple containing the records.
database connected established and cursor object created

g X data = cur‘sor.fetchmany(4) S——————— Fetch 4 records in the resultset
The data variable will

store the retrieved re- count = cursor.rowcount «————— How many records returned by SOL query in the resultset
cords from the resultser e B>
in the form of a ple % print("Total number of rows retrieved from resultset :", count)
(@ tuple of records) e, "
for rowindata : ¢+— Now you can process the data tuple
pr‘int (r‘ow) one row at a time

The output produced by above code is :

Total number of rows retrieved from resultset : 4 <——— Reslt of cursor.rowcount

(101, ‘Ruhani’, Decimal(‘76.80’), ‘A’, ‘A’, ‘Pending’) PR I o i e Y
(102, ‘George’, Decimal(‘71.20’), ‘B’, ‘A’, ‘Submitted’) NOTE

A
B A
(103, ‘simran’, Decimal(‘81.20’), ‘A’, ‘B’, ‘Evaluated’)
(104, ‘Ali’, Decimal(‘61.20’), ‘B’, ‘C’, ‘Assigned’) The cursor.rowcount retm

WUNDOUE JSpS R

(iii) The fetchone() method

The fetchone() method will return only one row from the resultset in the form of a tupl
containing a record. A pointer is initialized which points to the first record of the resultset a
soon as you execute a query. The fetchone() returns the record pointed to by this pointer, Wher
you fetch one record, +he pointer moves to next record of the recordset. So next time , if you
execute the fetchone() metod, it will return only one record pointed to by the pointer and afte;
fetching, the pointer will move to the next record of the resultset.

Also, carefully notice the behaviour of cursor.rowcount that always returns how many records
have been retrieved so far using any of the fetch..() methods.

: #database connected established and cursor object created

data = cursor.fetchone() «—— Fetch I records in the resultset
count = cursor.rowcount (first time, only the first record is retrieved)

",

print(data)
print("\nAgain fetching one record")

data = cur‘sor.fetchone() —————— Next Sfetchone() will fetch the next record
count = cursor.rowcount from the resultset

print(“Total number of rows retrieved from resultset :”, ’count)
print(data)

Result of cursor.rowcount
Total number of rows retrieved in resultset : 1 «— This time it is I because fetchone() method

(101, ‘Ruhani’, Decimal(‘76.80'), ‘A’, ‘A’, ‘Pending’) retrieved only 1 record from the cursor

Again fetching one record Result of cursor.rowcount
Total number of rows retrieved from resultset : 2 / This time it is 2 because fetchone()

P ’ . ‘ ’ T . ‘ “ y method retrieved only | record (nex{
(102, ‘George’, Decimal(‘71.20’), ‘B’, ‘A’, ‘Submitted’) rerondl Jroms e cursor it SO FAR

2 records have been retrieved.

Page 4|7

Step 7: Clean up the Environment

- Inthis final step, you need to close the connection established. This you can do as follows:
<connection object>.close()

- Eg.
mycon.close()

Parameterised Queries

E.g.

SELECT * FROM student WHERE MARKS > inp ;
Two methods to form query strings based on some parameters:

(i) Old Style : String Templates with % formatting
- In this style, string formatting uses this general form : f% v
Where fis a template string and v specifies the value or values to be formatted using that

template.
e.g.
select * from student where marks > %s" %(79,)
LS S el N)
f \'

Now you can store this query string in variable and then execute that variable through
cursor.execute() method as shown below :

database connected established and cursor object created
st = "select * from student where marks > %s" %(70,)
T AR .

NOTE
cursor.execute(st)

data = cursor.fetchall() Do not forget to enclose place-
for row in data : holder %s lf] qu?tes for string
5 parameters in string template.
print(row)

(101, ‘Ruhani’, Decimal(‘76.80°), ‘A’, ‘A’, ‘Pending’)

(102, ‘George’, Decimal(‘71.20’), ‘B’, ‘A’, ‘Submitted’)
(103, ‘Simran’, Decimal(‘81.20’), ‘A’, ‘B’, ‘Evaluated’)
(106, ‘Arsiya’, Decimal(‘91.60’), ‘A+’, ‘B’, ‘Submitted’)

Page 5|7

In the similar manner, you can add multiple parameter values, but you must not forget to enclose
placeholder %s in quotes for string parameters e.g.

database connected established and cursor object created See, ‘%s’ enclosed in
quotes for string value

st = "select * from student where marks > %s and section = '%s' " % (79,'B")

A — . X

cursor.execute(st) V tuple containing a number
data = cursor.fetchall() and a string value
for row in data : :
print(row) (103, ‘simran’, Decimal(‘81.20’), ‘A’, ‘B’, ‘Evaluated’)

(106, ‘Arsiya’, Decimal(‘91.60’), ‘A+’, ‘B’, ‘Submitted’)

(ii) New Style : String Templates with % formatting
This method is based on use of format() method.
The general form for using format() is :

template.format(p0 , p1, ,k0=v0,kl=v]l, ...)
The template is a string containing a mixture of one or more format codes embedded in constant
text. The format method uses its argument to substitute an appropriate value for each format
code in the template.

e.g.1.

Consider following example. In this example, the format code “{0}” is replaced by the first
positional argument (49), and “{1}” is replaced by the second positional argument, the string “okra”

These are place holders N _ Values tuple V. Values are
/ N o substituted from here

"We have {0} hectares planted to {1}." .format (49, “okra”)
The above string template will yield following string II

'We have 49 hectares planted to okra.

e.qg.2.

_ Values tuple V. Values are
substituted from here

ter ='Tsunami')

Output:
‘Tsunami has eaten Tokyo

e.g.3.

st = "select * from student where marks > {} and section="{}"' ".format(70,'B")

The above query string st stores : \ Place holder enclosed in quote,
: [for string value
"select * from student where marks > 70 and section='B 7 €

Page 6|7

Performing INSERT and UPDATE Queries

- Insert and Update SQL commands, can also executed using SELECT queries.

- But after executing INSERT and UPDATE queries you must commit your query. This makes the
changes made by the INSERT and UPDATE queries permanent. For this you must run commit()
method , i.e.

<connection object>.commit()

E.g. 1. INSERT query example

st=“INSERT INTO student (rollno , name , marks , marks , grade, section)
VALUES({ }, {V, {}, 4V, {Y)" format(108,’Eka’ , 84.0, ‘A’ , ‘B’)

cursor.execute(st)

mycon.commit()

E.g. 2. UPDATE query example

st= “UPDATE student SET marks = {} WHERE marks ={}” . format(77, 76.8)
cursor.execute(st)

mycon.commit()

Important Questions

Q1. What is database connectivity ?

Ans. Database connectivity refers to connection and communication between an applicationand a
database system.

Q2. What is Connection ? What is its role?

Ans. A Connection (represented through a connection object) is the session between the application
program and a database. To do anything with database, one must have a connection object.

Q3. What is a result set?

Ans. Aresult set refers to a logical set of records that are fetched from the database by executing a
guery and made available to the application-program.

Q4. Which package must be imported in Python to create a database connectivity application?

Ans. One such package is mysql.connector

3k 3k 3k 3k 3k 3k ok sk 3k 3k 3k 3k ok %k %k 3%k %k 3k %k %k %k %k %k %k k

Page 7|7

