
P a g e 1 | 7

Chapter 10 – Interface Python with MySQL

In order to connect to a database from within Python, you need a library(mysql connector) that

provides connectivity functionality.

Steps for Creating Database Connectivity Applications

There are mainly seven steps that must be followed in order to create a database connectivity

application.

Step 1 : Start Python.

Step 2 : Import the packages required for database programming.

Step 3 : Open a connection to database.

Step 4 : Create a cursor instance.

Step 5 : Execute a query.

Step 6 : Extract data from result set.

Step 7 : Clean up the environment.

Step 1. Start Python

- Start Python’s editor where you can create your Python scripts.

Step 2. Import mysql.connector Package

- First of all you need to import mysql.connector package in your Python scripts. For this, write

import command as shown below:

 import mysql.connector

or

import mysql.connector as sqLtor

Step 3: Open a connection to database.

- The connect() function of mysql.connector establishes connection to a MySQL database and

requires four parameters, which are:

 <connection-object> = mysql.connector.connect(host = <host-name> , user = <username> ,

passwd = <password> , database = <database>)

 e.g.

 The above command will establish connection to MySQL database with user as “root” , password
as “MyPass” and to the MySQL database namely test which exists on the MySQL.

P a g e 2 | 7

- You can also check for successful connection using function is_connected() with connected

object, which returns True , if connection is successful.
e.g.

Step 4 : Create a cursor instance.

- When we connect to a database from within a script/program, then the query gets sent to the

server, where it gets executed, and the resultset (the set of records retrieved as per query) is sent

over the connection to you, in one burst of activity, i.e. in one go. And in order to do the processing

of data row by row, a special control structure is used, which is called Database Cursor.

- Syntax:

 <cursorobject> = <connectedobject>.cursor()

- E.g.

Step 5 : Execute a query

- Once you have created a cursor, you can execute SQL query using execute() function with cursor

object as per following syntax:

 <cursorobject>.execute(<sql query string>)

- E.g.

The above code will execute the given SQL query and store the retrieved records(i.e. , the resultset)

in the cursor object (namely cursor) which you can then use in your program/scripts as required.

Step 6 : Extract data from result set.

- Once the result of query is available in the form of a resultset stored in a cursor object, you can

extract data from the resultset using any of the following fetch() functions.

(i) <data>= <cursor>.fetchall() - It will return all the records retrieved as per query in a tuple

form.

(ii) <data> = <cursor>.fetchone() - It will return one record from the resultset as a tuple or a

list. First time it will return the first record, next time it will fetch the next record and so

on.

This method returns one record as a tuple : if there are no more records then it returns

None.

P a g e 3 | 7

(iii) <data>=<cursor>.fetchmany(<n>) - This method accepts number of records to fetch and

returns a tuple where each record itself is a tuple.

(iv) <variable>=<cursor>.rowcount – The rowcount is a property of cursor object that returns
the number of rows retrieved from the cursor so far.

For Example,

(i) The fetchall() method

P a g e 4 | 7

(ii) The fetchmany() method

(iii) The fetchone() method

P a g e 5 | 7

Step 7: Clean up the Environment

- In this final step, you need to close the connection established. This you can do as follows:

<connection object>.close()

- E.g.

 mycon.close()

Parameterised Queries

E.g.

Two methods to form query strings based on some parameters:

(i) Old Style : String Templates with % formatting

- In this style, string formatting uses this general form : f % v

Where f is a template string and v specifies the value or values to be formatted using that

template.

e.g.

Now you can store this query string in variable and then execute that variable through

cursor.execute() method as shown below :

P a g e 6 | 7

- In the similar manner, you can add multiple parameter values, but you must not forget to enclose

placeholder %s in quotes for string parameters e.g.

(ii) New Style : String Templates with % formatting

- This method is based on use of format() method.

- The general form for using format() is :

template.format(p0 , p1 , …….., k0 = v0 , k1 = v1, ……..)

The template is a string containing a mixture of one or more format codes embedded in constant

text. The format method uses its argument to substitute an appropriate value for each format

code in the template.

e.g.1.

e.g.2.

Output:

e.g.3.

P a g e 7 | 7

Performing INSERT and UPDATE Queries

- Insert and Update SQL commands, can also executed using SELECT queries.

- But after executing INSERT and UPDATE queries you must commit your query. This makes the

changes made by the INSERT and UPDATE queries permanent. For this you must run commit()

method , i.e.
<connection object>.commit()

E.g. 1. INSERT query example

st = “INSERT INTO student (rollno , name , marks , marks , grade, section)

 VALUES({ } , ‘{ }’ , { } , ‘{ }’, ‘{ }’)”.format(108,’Eka’ , 84.0 , ‘A’ , ‘B’)

cursor.execute(st)

mycon.commit()

E.g. 2. UPDATE query example

st = “UPDATE student SET marks = { } WHERE marks = { }” . format(77, 76.8)

cursor.execute(st)

mycon.commit()

Important Questions

Q1. What is database connectivity ?

Ans. Database connectivity refers to connection and communication between an application and a

database system.

Q2. What is Connection ? What is its role?

Ans. A Connection (represented through a connection object) is the session between the application

program and a database. To do anything with database, one must have a connection object.

Q3. What is a result set?

Ans. A result set refers to a logical set of records that are fetched from the database by executing a

query and made available to the application-program.

Q4. Which package must be imported in Python to create a database connectivity application?

Ans. One such package is mysql.connector
