
P a g e 1 | 64

Class XII - Chapter 1 – Working With Numpy

Introducing Python Pandas

 Python Panda is Python’s library for data analysis.
 Panda – “ Panel Data Analysis”

What is Data Analysis?

 It refers to process of evaluating big data sets using analytical & statistical tools so as to discover useful information and
conclusion to support business decision making.

Python pandas & Data Analysis

 Python pandas provide various tools for data analysis and makes it a simple and easy process.

 Author of Pandas is Wes Mckinney.

Using Pandas

 Pandas is an opens source library built for Python programming language, which provides high performance

data analysis tools.

 In order to work with pandas in Python, you need to import pandas library in your python environment.

 Benefits of using Panda for Data Analysis

1. It can read or write in many different data formats(integer,float,double,etc.)

2. It can calculate in all ways data is organized, i.e., across rows and down columns.

3. It can easily select subsets of data from bulky data sets and even combine multiple datasets together.

4. It has functionality to find and fill missing data.

5. It supports advanced time-series functionality(Time series forecasting is the use of a model to predict future

values based on previously observed values)

 **Pandas is best at handling huge tabular data sets comprising different data formats.

NumPy Arrays

 NumPy(‘Numerical Python’ or ‘Numeric Python’) is an open source module of Python that offers functions and

routines for fast mathematical computation on array and matrices.
 In order to use Numpy, you must import in your module by using a statement like:

import numpy as np

 The above statement has given np as alias name for numpy module. Once imported you can use
both names i.e. numpy or np for functions, e.g. numpy.array() is same as np.array().

Array

 It refers to a named group of homogenous (of same type) elements. E.g. students array containing 5

entries as [34, 37, 36, 41, 40] then students is an array.

Types of Numpy array

 A NumPy array is simply a grid that contains values of the same/homogenous type. NumPy Arrays

come in two forms:

 1-D(one dimensional) arrays known as Vectors(having single row/column only)

 Multidimensional arrays known as Matrices(can have multiple rows and columns)

You can use any identifier name in place of

np

P a g e 2 | 64

Example 1: (Creating a 1-D Numpy array)

 import numpy as np

 list = [1,2,3,4]

 a1=np.array(list)

 print(a1)

Output : [1 , 2 , 3 , 4]

**Individual elements of above array can be accessed just like you access a list’s i.e. arrayname [index]

Example 2: (Creating a 2-D Numpy array)

import numpy as np

a7 = np.array([[10,11,12,13] , [21,22,23,24]])

print(a7[1,3])

print(a7[1][3])

print(a7)

 Output:

Storage of 2D Arrays in Memory

Elements of arrays are stored in contiguous memory locations. Therefore, 2D arrays are linearized for
storage purpose in one of these two alternatives.

(i) Row-major or row wise

(ii) Column-major or column-wise

Row Major Implementation of 2D Arrays

This linearization technique stores firstly the first row of the array, then the second row of the array, then
the third row, and so forth.

It will create a NumPy array from
the given list

This is a 2-D array having rank 2

You can access elements of multi-
dimension arrays as

<array>[row][col]

 or as

<array>[row, col]

P a g e 3 | 64

Column Major Implementation of 2D Arrays

This linearization technique stores firstly the first column of the array, then the second column of the array,
then the third column, and so forth.

Terms associated with Numpy Arrays

1. Axes

 Numpy refers to the dimensions of its arrays as axes. The axes of an ndarray also describe the order

of indexing in multi-dimensional ndarrays.

 Axes are always numbered 0 onwards for ndarrays.

2. Rank

 The number of axes in an ndarray is called its rank.

3. Shape

 The shape of an ndarray tells about the number of elements along each axis of it.

4. Datatype(dtype)

 It tells about the type of data stored in the ndarray.

 By default, ndarrays have the datatype as float.

5. Itemsize

 This term refers to the size of each element of an ndarray in bytes.

 The datatype and itemsize are related. The itemsize is as per the datatype e.g., for data type int16(16

bit integer), the itemsize is 2 bytes(equal to 16 bits).

6. type() function in NumPy

 It is used to check the type of objects in Python.

Example:

P a g e 4 | 64

import numpy as np

list=[1,2,3,4]

a1=np.array(list)

a2 = np.array([[10,11,12,13] , [21,22,23,24]])

print(type(a1))

print(type(a2))

print(a1.shape)

print(a2.shape)

print(a2.itemsize)

Output:

Difference between NumPy and List

S.No. NumPy List

1. Once a Numpy array is created, you cannot
change its size.

Size can be changed.

2. Every NumPy array contain elements of
homogenous types, i.e. all its elements have one
and only one data type.

List can contain elements of different data type.

3. NumPy arrays support vectorized operations, i.e.
if you apply a function, it is performed on every
item in the array.

It does not support vectorized.

NumPy Data Types

The NumPy arrays can have elements in data types supported by NumPy. Following table are the data types

supported by NumPy:

The shape attribute gives the dimensions of a NumPy array.

The itemsize attribute returns the length of each element of

array in bytes.

P a g e 5 | 64

Creating Numpy Arrays

1. Using array() function

The array() is useful for creating ndarrays from existing lists and tuples. (see example given on pg.no.2)

2. Using fromiter

 To create ndarrays from sequence of all types (numeric sequence, or string sequence or

dictionaries etc.), you can use fromiter() function.

 The syntax to use fromiter() function is :

 numpy.fromiter(<iterable sequence >, dtype=<datatype> , [count=<number of elements to be read>])

 ndarray from a dictionary

 adict = { 1 : ‘A’ , 2 : ‘B’ , 3 : ‘C’ , 4 : ‘D’ , 5 : ‘E’ }

 ar5 = np.fromiter(adict , dtype=np.int32)

 The above statement will create an ndarray from the keys of dictionary adict having numpy

datatype int32 (i.e., 32 bits or 4 bytes long).

 ndarray from a String

 astr = “thisIsTrue”

 ar6 = np.fromiter(astr, dtype=”U2”)

 print(ar6)

 print(ar6[0] , ar6[4])

 picking a smaller set of elements from a sequence using fromiter()

 astr = “thisIsTrue”

 ar7 = np.fromiter(astr, dtype=”U1” , count=3)

 print(ar7)

3. Creating arrays with a numerical range using arange()

If skipped, then all the elements are read.

Each element of ndarray can have length of 2 unicode

characters.

count=3 means only first 3 characters will be

picked from the string astr for the ndarray.

P a g e 6 | 64

arange() creates a NumPy array with evenly spaced values within a specified numerical range. It is used as:

Example:

 import numpy as np

arr1 = np.arange(7)

print(arr1)

arr2=np.arange(1,7,2,np.float32)

print(arr2)

Output:

4. Creating arrays with a numerical range using linspace()

 linspace() is used to generate evenly spaced elements between two given limits.

 Example:

import numpy as np

arr1 = np.linspace(2,10,3)

print(arr1)

 Output:

5. Creating a 2-dimensional ndarrays using array()

Refer example 2 on page no. 2.

6. Creating 2D ndarray using arange()

 Two steps: 1. Create an ndarray using arange()

 2. Reshape the ndarray created in previous step using reshape() as per syntax:

 <ndarray>.reshape(<rows, columns>)

P a g e 7 | 64

** The no. of elements in the originally created ndarray must be the same as that of new 2D array being

created through reshape().

 You can also combine arange() and reshape() in single statement as shown below:

 ary = np.arange(8.0) . reshape(2, 4)

 print(ary)

7. Creating empty arrays using empty()

Sometimes you need to create empty arrays or an uninitialized array of specified shape and dtype, in

which you can store actual data as and when required. For this you can use empty() function as:

** After creating empty array, if you display the contents of the array, it will display any random contents,

which are uninitialized garbage values.

Example:

import numpy as np

arr1 = np.empty([3,2])

arr2 = np.empty([3,4] , dtype=np.int8)

print(arr1.dtype , arr2.dtype)

print(arr1)

No dtype specified

dtype specified as int8

empty() creates array with any random garbage values

P a g e 8 | 64

Output:

8. Creating arrays filled with zero using zeros()

The function zeros() takes same attributes as empty(), and creates an array with specifies size and type

but filled with zeros.

Example:

import numpy as np

arr1 = np.zeros([3,2],dtype=np.int64)

print(arr1)

 Output:

9. Creating arrays filled with 1’s using ones()

The function ones() takes same attributes as empty(), and creates an array with specified size and type

but filled with ones.

 Example:

import numpy as np

arr1 = np.ones([3,2],dtype=np.int64)

print(arr1)

 Output:

** There are three more functions empty_like(), zeros_like() and ones_like() that you can use to create an

array similar to another existing array.

 Accessing Individual Elements using Array Indexing

P a g e 9 | 64

1. For 1D arrays - Syntax : <1D array>[<index>]

2. For 2D arrays – Syntax : (i) <2D array> [<rowindex>, <column index>]

 (ii)<2D array>[<rowindex>][<columnindex>]

 **Negative indexes are also valid like in lists or strings,

 Array Slices

 It refers to the process of extracting a subset of elements from an existing array and returning the

result as another array, possibly in a different dimension from the original.

 Syntax for performing slicing : <Arrayname>[<start>: <stop> : <step>]

 When <start> , <stop> or <step> values are not specified then Python will assume their default values

as :

 start = 0

 stop = dimension size

 step = 1

 1D Array Slices

P a g e 10 | 64

 2D Array Slices

 For extracting a slice from a 2D array, you need to specify syntax as:

 Like 1D array slices, when not specified , <start> takes default value 0, <stop> takes dimension size

and <step> takes default value of 1.

 2D array slice is computed as :

(i) Extract rows as per row slice specified.

(ii) On the extracted rows, apply column slice to get the desired 2D array slice.

P a g e 11 | 64

P a g e 12 | 64

P a g e 13 | 64

P a g e 14 | 64

P a g e 15 | 64

Joining or Concatenating NumPy Arrays

1. Using hstack() and vstack()

2. Using concatenate()

1. Combining existing arrays horizontally or vertically

 Sometimes you want to create a 2D array from existing 1D or 2D arrays by stacking them next to

one another, e.g.

 If you have two 1D arrays as :

 Now, you may want to create a 2D array by stacking these two 1D arrays

 horizontally as :

 Syntax : numpy. hstack(<tuple containing names of 1D arrays to be stacked>)

 or , vertically as :

 Syntax : numpy. vstack(<tuple containing names of 1D arrays to be stacked>)

 Consider following examples. Suppose you have following sequences/arrays:

lst1 = [1, 2, 3]

lst2 = [4, 5, 6]

lst3 = [[9, 8, 7] ,

 [6, 5, 4]]

lst4 = [[4] ,

 [5]]

P a g e 16 | 64

 ** for hstack() to work, the arrays being joined must match in their vertical size(rows) and for vstack() to work,

the arrays being joined must match in their horizontal size(columns).

 Joining 2D arrays using hstack() and vstack()

P a g e 17 | 64

2. Combining existing arrays using concatenate()

 The syntax for using concatenate() is :

numpy. concatenate(<tuple of arrays to be joined> , [axis = <n>])

 The axis argument specifies the axis along which arrays are to be joined. If skipped, axis is

assumed as 0 (i.e., along the rows).

If you specify axis = 1, then arrays are joined on axis 1, i.e., along the columns.

 If axis is 0, then the shape of the arrays being joined must match on column dimension.

If axis is 1, then the shape of the arrays being joined must match on rows dimension.

Consider the following arrays:

P a g e 18 | 64

Transposing an array for concatenation

With transpose, the axes get swapped and you can join the arrays on non-matching axis. To get the

transpose of an array, all you need to write is :

 <array>.T

Example:

** If you specify axis = None, then the arrays gets flattened. E.g.

Splitting NumPy Arrays to Get Contiguous Subsets

P a g e 19 | 64

1. The hsplit() and vsplit() functions

 hsplit() function is used to extract the subsets of a Numpy array after splitting it horizontally.

Similarly, you can use vsplit() function to extract the subsets of a Numpy array after splitting it

vertically.

 The syntax of using hsplit() and vsplit() is similar, which is :

 numpy.hsplit(<array> , <n>)

 numpy.vsplit(<array> , <n>)

 where <array> is the NumPy array, and <n> is the no. of sections/subsets in which the array is to

be divided.

 The <n> must be chosen so that it results in equal division of <array>, otherwise an error will be

raised.

 Consider following array with 4 x 6 dimensions, namely ary,

So, horizontally we can split the arrays in 2 equal parts or 3 equal parts i.e, following two

statements will yield equal subsets of array with horizontal split.

P a g e 20 | 64

 np. hsplit(ary , 2)

 np. vsplit(ary, 3)

The O/P produced by above two statements will be :

But, np.hsplit(ary , 4) will give error, because the array ary cannot be equally divided in 4 or 5

subsets.

 Function vsplit() works identically as hsplit(), but it divides the array subsets on vertical axis.

But, np.vsplit(ary , 3) will raise an error.

 You can assign these split subsets to individual array names and use them as per your convenience,

e.g.

P a g e 21 | 64

2. Using the split() function

- allows the splitting (horizontally or vertically) by providing axis argument.(axis = 0 for horizontal axis based

division, axis =1 for vertical axis based division).

- split() allows you to divide array into equal as well as non-equal subarrays.

- The syntax for using split() is as given below:

 numpy.split(<array>, <n>|<1D array> , [axis = 0])

 <array> is the Numpy array to be split.

 With 2nd argument as <n>, for axis = 0, it behaves as vsplit() and for axis =1, it behaves as hsplit().

 If 2nd argument is given as 1D array then <array> is split in unqual subarrays as explained below.

 The axis argument is optional and if skipped, it takes the value 0 i.e., on horizontal axis. For axis =

1, the split happens on vertical axis.

e.g. (for 1D array)

P a g e 22 | 64

e.g.(for 2D array)- consider the 2D ndarray ary.

np. split(ary , [1, 4])

Extracting Condition based Non-contiguous Subsets

P a g e 23 | 64

 You can extract non-contiguous subsets of a Numpy array by applying condition on the NumPy array. The

specified condition will be applied to each element of the array and the elements meeting the criteria will be

part of the subset array returned. This is done with the help of extract() as per following syntax:

 numpy.extract(<condition> , <array>)

 <condition> is a condition applied on an ndarray.

 <array> is the ndarray on which the <condition> is applied.

 Framing <condition> for extract ()

Once you have saved the condition with a name, you can extract elements from the ndarray by using

extract() as :

 np.extract(cond1 , ary)

And python will return a 1D array containing all the elements which satisfy the condition.

Arithmetic Operations on 2D Arrays

- Arithmetic operations (addition, subtraction, division, multiplication, remainder etc.)

- The arithmetic operations on 2D arrays can be performed in two ways:

P a g e 24 | 64

(i) Using Operators – The syntax for using operators is :

 <ndarray1> + <n> | <ndarray2>

 <ndarray1> - <n> | <ndarray2>

 <ndarray1> * <n> | <ndarray2>

 <ndarray1> / <n> | <ndarray2>

 <ndarray1> % <n> | <ndarray2>

The result of above operations is an ndarray.

(ii) Using NumPy Functions – add() , subtract() , multiply() , divide() , mod() or remainder().

The syntax of using the arithmetic functions is :

 Numpy.add(<ndarray1> , <n>|<ndarray2>)

 Numpy.subtract(<ndarray1> , <n>|<ndarray2>)

 Numpy.multiply(<ndarray1> , <n>|<ndarray2>)

 Numpy.divide(<ndarray1> , <n>|<ndarray2>)

 Numpy.mod(<ndarray1> , <n>|<ndarray2>)

 Numpy.remainder(<ndarray1> , <n>|<ndarray2>)

* <n> - scalar value

P a g e 25 | 64

P a g e 26 | 64

Applications of Numpy Arrays

1. Covariance 2. Correlation 3. Linear regression

Covariance

- It is a tool in statistics in which we can compare two different datasets.

- The intuitive idea behind covariance is that it tells us how similar varying two datasets are. A high positive

covariance between 2 datasets means that they are strongly similar. Similarly, a high negative covariance

between 2 datasets means that they are very dissimilar.

Calculating covariance using cov()

- Numpy provides a function namely cov() to calculate covariance, which can be used as:

 numpy.cov(<arr1>,<arr2>)

where <arr1> and <arr2> are two sets of observations.

The result will be n x n matrix where n is the number of variables for which covariance is calculated.

e.g.

 import numpy as np

 a = np.array([1 , 2 , 3 , 4 , 5])

 b = np.array([3 , 4 , 0 , -1 , -3])

 cov_mat = np.cov(a , b)

 print(cov_mat)

 Output:

 [[2.5 , -4.25] ,

 [-4.25 , 8.3]]

The four values of cov_mat generated are like this:

Covariance (Negative values indicate

they are not very similar)

P a g e 27 | 64

 cov_mat[0][0] = var(a)

 cov_mat[0][1] = covariance(a, b)

 cov_mat[1][0] = covariance(b,a) = covariance(a,b)

 cov_mat[1][1] = var(b)

Correlation

- When you need to know only whether two data sets are similar and different and not how similar or

different, you use correlation.

- It is basically normalised covariance.

- It give two values: 1 if the data sets have positive covariance and -1 if the datasets have negative

covariance.

- To calculate correlation, you can use coeff() of numpy() as :

 numpy.corrcoef(<arr1> , <arr2>)

e.g.

 import numpy as np

 a = np.array([1 , 2 , 3 , 4 , 5])

 b = np.array([3 , 4 , 0 , -1 , -3])

 correlation_mat = np.corrcoeff(a , b)

 print(correlation_mat)

Output:

 [[1 , -0.93299621] ,

 [-0.93299621 , 1]]

Linear regression

- Suppose,we have a set of ordered pairs {(x1, y1) , (x2 , y2), ……, (xn , yn)} where all yi are dependent on x i. Our

objective is to find their relation, how they are dependent on x. This is called regression. If relation between

x and y is linear , that is y = ax + b , then it is called linear regression.

- So, linear regression is a method used to find a relationship between a dependent variable and a set of

independent variables.

- For finding out linear regression, Numpy function polyfit() is used. The syntax of polyfit() is :

 numpy. polyfit(x , y , deg)

where

 x is an array containing x-coordinates of the M sample points.

 y is an array having same shape as x and contains y-coordinates of the sample points.

 degree – specifies the degree of the polynomial.

P a g e 28 | 64

Class XII - Chapter 2 – Python Pandas

DataFrame Data Structure

 A DataFrame is another pandas data structure, which stores data in two-dimensional array. It is actually a two dimensional labelled

array, which is actually an ordered collection of columns where columns may store different types of data , e.g. numeric or string

or floating point or boolean type etc.

 A two dimensional array is an array in which each element is itself an array. For instance, an array A [m][n] is an m by n table with

m rows and n columns containing m x n elements.

Characteristics

1. It has two indexes or we can say that two axes – a row index (axis=0) and column index (axis=1).

2. Each value is identifiable with the combination of row index and column index. The row index is known as index in general and

the column index is called the column-name.

3. The indexes can of numbers or letters or strings.

4. There is no condition of having all data of same type across columns; its columns can have data of different types.

5. You can easily change its values, i .e., it is value-mutable.

6. You can add or delete rows/columns in a DataFrame. In other words, it is size-mutable.

Creating and Displaying a DataFrame

 A DataFrame object can be created by passing data in two-dimensional format. Like series data structure, before start working

with DataFrame the following two libraries needs to be imported:

 import pandas as pd

 import numpy as np

 To create a DataFrame object, you can use syntax as :

P a g e 29 | 64

1. Creating a DataFrame Object from a 2-D Dictionary

 A two dimensional dictionary is a dictionary having items as (key: value) where value part is a data structure of any type :

another dictionary, an ndarray, a Series object, a l ist etc. But here the value parts of all keys should have similar structure

and equal lengths.

(a) Creating a dataframe from a 2D dictionary having values as lists/ndarrays

e.g.

import numpy as np

import pandas as pd

dict1={'Students': ['Ruchika' , 'Neha', 'Mark' , 'Gurpreet' , 'Jamaal'] ,

 'Marks': [79.5 , 83.75 , 74 , 88.5 , 89] ,

 'Sport' : ['Cricket', 'Badminton', 'Football ' , 'Athletics' , 'Kabaddi'] ,

 }

dtf1 = pd.DataFrame(dict1)

print(dtf1)

Output:

** As you can see that the DataFrame object created has its index assigned automatically (0 onwards) just as it happens with

Series objects, and the columns are places in sorted order. keys of the dictionary have become columns.

** You can specify your own indexes too by specifying a sequence by the name index in the DataFrame() function, e.g.

 dtf1 = pd.DataFrame(dict1, index=[‘I’, ‘II’, ‘III’ , ‘IV’ , ‘V’])

 print(dtf1)

(b) Creating a DataFrame from a 2D dictionary having values as dictionary objects:

e.g.

 import numpy as np

 import pandas as pd

 yr2015 = { 'Qtr1' : 34500 , 'Qtr2' : 56000 , 'Qtr3' : 47000 , 'Qtr4': 49000}

 yr2016 = {'Qtr1' : 44900, 'Qtr2' : 46100 , 'Qtr3' : 57000 , 'Qtr4': 59000}

 yr2017 = { 'Qtr1' : 54500 , 'Qtr2' : 51000 , 'Qtr3' : 57000 , 'Qtr4 ': 58500}

 diSales = { 2015 : yr2015 , 2016 : yr2016 , 2017 : yr2017}

P a g e 30 | 64

 df1 = pd.DataFrame(diSales)

 print(df1)

Output:

- In this case , Python interprets the outer dict keys as the columns and the inner keys as the row indices.

- As the keys of all inner dictionaries(yr2015 , yr2016 , yr2017) are exactly the same in number and names, the

dataframe object df2 also has the same number of indexes. Since the inner keys have values in all the inner

dictionaries, there is no missing value in the dataframe object.

- Now had there been a situation where inner dictionaries had non-matching keys, then in that case Python would

have done following things:

(i) There would have been total number of indexes equal to sum of unique inner keys in all the inner

dictionaries.

(ii) For a key that has no matching keys in other inner dictionaries, value NaN would be used to depict the

missing values.

Example:

import numpy as np

import pandas as pd

yr2015 = { 'Qtr1' : 34500 , 'Qtr2' : 56000 , 'Qtr3' : 47000 , 'Qtr4': 49000}

yr2016 = {'Q1' : 44900, 'Q2' : 46100 , 'Q3' : 57000 , 'Q4': 59000}

yr2017 = { 'A' : 54500 , 'B' : 51000 , 'C' : 57000 }

diSales = { 2015 : yr2015 , 2016 : yr2016 , 2017 : yr2017}

df1 = pd.DataFrame(diSales)

print(df1)

Output:

Example:

import numpy as np

import pandas as pd

yr2015 = { 'Qtr1' : 34500 , 'Qtr2' : 56000 , 'Qtr3' : 47000 , 'Qtr4': 49000}

yr2016 = {'Qtr1' : 44900, 'Qtr2' : 46100 , 'Q3' : 57000 , 'Q4': 59000}

P a g e 31 | 64

yr2017 = { 'A' : 54500 , 'B' : 51000 , 'Qtr4' : 57000 }

diSales = { 2015 : yr2015 , 2016 : yr2016 , 2017 : yr2017}

df1 = pd.DataFrame(diSales)

print(df1)

Output:

2. Creating a DataFrame Object from a 2-D ndarray

 You can also pass a two-dimensional NumPy array to DataFrame() to create a dataframe object.

Example:

import numpy as np

import pandas as pd

narr1=np.array([[40,43,53],[64,55,46]],np.int32)

dtf1 = pd.DataFrame(narr1)

print(dtf1)

 Output:

** As no keys are there, hence default names are given to indexes and columns, i.e. 0 onwards.

 You can however, specify your own column names and/or index names by giving a columns sequence and/or index

sequence.

Example:

import numpy as np

import pandas as pd

narr1=np.array([[40,43,53],[64,55,46]],np.int32)

dtf1 = pd.DataFrame(narr1,columns=['First','Second','Three'], index=['A','B'])

print(dtf1)

Output:

 If rows of ndarrays differ in length, i .e., if number of elements in each row differ, the Python will create just single colu mn in

the dataframe object and the type of column will be considered as object.

Example:

import numpy as np

import pandas as pd

P a g e 32 | 64

narr1=np.array([[40,43],[64,55,46], [46.2,56.2]])

dtf1 = pd.DataFrame(narr1)

print(dtf1)

Output:

3. Creating a DataFrame object from a 2D dictionary with values as Series Object

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {0 : population , 1 : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

Output:

** Dataframe object created (dtf2) has columns assigned from the keys of the dictionary object and its index assigned from

the indexes of the series objects which are the values of the dictionary object.

4. Creating a DataFrame Object from another DataFrame Object

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {0 : population , 1 : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

dtf3= pd.DataFrame(dtf2)

print(dtf3)

Output:

Single column created this time

because the lengths of rows of
ndarray did not match.

P a g e 33 | 64

DataFrame Attributes

When you create a DataFrame object, all information related to it (such as its size, its datatype etc.) is available through attributes. You

can use these attributes in the following format to get information about the dataframe object.

 <DataFrame object>.<attribute name>

(a) Retrieving index(axis 0), Columns(axis 1), axes’ details and data type of columns

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi ', 'Mumbai','Kolkata','Chennai'])

dict2 = {0 : population , 1 : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

print(dtf2.index)

print(dtf2.columns)

print(dtf2.axes)

print(dtf2.dtypes)

Output:

P a g e 34 | 64

(b) Retrieving size(number of elements), shape, number of dimensions

Use attributes size, shape and ndim to get number if elements, dimensionality and number of axes respectively of a dataframe

object, e.g.

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {0 : population , 1 : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

print(dtf2.size)

print(dtf2.shape)

print(dtf2.ndim)

Output:

(c) Checking for emptiness of dataframe or presence of NaNs in dataframe

Use attribute empty to check for emptiness of a dataframe

e.g.

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {0 : population , 1 : AvgIncome}

dtf2 = pd.DataFrame(dict2)

P a g e 35 | 64

print(dtf2)

print(dtf2.empty)

Output:

(d) Getting number of rows in a dataframe

The len(<DF Object>) will return the number of rows in a dataframe.

(e) Getting count of non-NA values in dataframe

You can use count() with dataframe to get the count of Non-NaN values,but count() with dataframe is l ittle elaborate:

I. If you do not pass any argument or pass 0 (default is 0 only), then it returns count of Non-NA values for each column.

II. If you pass argument as 1, then it returns count of non-NaN values for each row.

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {0 : population , 1 : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

print(len(dtf2))

print(dtf2.count(0))

print(dtf2.count(1))

Output:

P a g e 36 | 64

(f) Transposing a Dataframe

You can transpose a dataframe by swapping its indexes and columns by using attribute T ,

e.g.

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {0 : population , 1 : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

print(dtf2.T)

Output:

SELECTING OR ACCESSING DATA

1. Selecting/Accessing a Column

Single column at a time

 <DataFrame object> [<Column name>]

 Or

 <DataFrame object>.<Column name>

Multiple columns at a time

 <DataFrame object>[[columnname , columnname, ……….]]

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi ', 'Mumbai','Kolkata','Chennai'])

dict2 = {'Population' : population , 'Avg. Income' : AvgIncome}

 dtf2 = pd.DataFrame(dict2)

 print(dtf2)

print("========")

print(dtf2.Population)

print("========")

print(dtf2[['Population','Avg. Income']])

P a g e 37 | 64

 Output:

2. Selecting/Accessing a SubSet from a Dataframe using Row/Column Name

For this purpose, you can use following syntax to select/access a subset from a dataframe object:

<DataFrameObject>.loc [<startrow>: <endrow>, <startcolumn> :<endcolumn>]

I. To access a row, just give the row name/label as this : <DF Object>.loc[<row label> , :]

Make sure not to miss the COLON AFTER COMMA.

II. To access multiple rows, use : <DF object>.loc[<start row> :<endrow>, :]

Make sure not to miss the COLON AFTER COMMA.

III. To access selective columns, use : <DF object>.loc[: , <start column> , <end column>]

IV. To access a range of columns from a range of rows, use:

 <DF object>.loc [<startrow>: <endrow>, <startcolumn> :<endcolumn>]

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {'Population' : population , 'Avg. Income' : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

print("==Accessing Single row==")

print(dtf2.loc['Delhi' , :])

print(dtf2.loc['Kolkata' ,:])

print("==Accessing Multiple rows==")

print(dtf2.loc['Mumbai' : 'Chennai' , :])

print("==Accessing Columns==")

print(dtf2.loc[: , 'Population'])

print("==Accessing range of columns and rows==")

print(dtf2.loc['Delhi' : 'Mumbai' , 'Population' : 'Avg. Income'])

 Output:

P a g e 38 | 64

3. Obtaining a Subset/Slice from a Dataframe using Row/Column Numeric Index/Position

Sometimes your dataframe object does not contain row or column labels or even you may not remember them. In such

cases, you can extract subset from dataframe using the row and column numeric index/position, but this time you will use

iloc instead of loc. iloc means integer location.

 <DF object>.iloc[<startrow index>: <endrow index>, <startcolumn index> :<endcolumn index>]

** endindex is excluded here.

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

 dict2 = {'Population' : population , 'Avg. Income' : AvgIncome}

 dtf2 = pd.DataFrame(dict2)

 print(dtf2)

print(dtf2.iloc[0:2,0:1])

 Output:

4. Selecting/Accessing Individual Value

(i) Either give name of row or numeric index in square brackets with, i .e., as this :

 <DF object>.<column>[<row name or row numeric index>]

(ii) You can use at or iat attribute with DF object as shown below:

 <DF object>.at [<row name>, <column name>]

P a g e 39 | 64

 Or

 <DF object>. iat [<numeric row index>, <numeric column index>]

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {'Population' : population , 'Avg. Income' : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

print(dtf2.Population['Delhi'])

print(dtf2.at['Delhi', 'Population'])

print(dtf2.iat[0,0])

Output:

5. Assigning/Modifying Data Values in Dataframe

(a) To change or modify a single data value, use syntax :

 <DF>.<columnname>[<row name/label>] = <value>

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi ', 'Mumbai','Kolkata','Chennai'])

dict2 = {'Population' : population , 'Avg. Income' : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

dtf2.Population['Mumbai'] = 63819621

print(dtf2)

Output:

P a g e 40 | 64

6. Adding Columns , rows and Deleting Columns in DataFrames

(a) To change or add a column, use syntax :

<DF object>[< column name >] = <new value>

 If the given column name does not exist in dataframe then a new column with this name is added. But the rows of this

new column have the same given value.

 Other ways of adding a column to a dataframe :

<DF object> . at [: , <columnname>] = <values for column>

 Or

<DF Object> . loc [: , <columnname>] = < values for column >

(b) Similarly, to change or add a row, use syntax:

<DF object> . at [<rowname> , :] = <new value>

 Or

<DF Object> . loc [<row name> , :] = <new value>

 Likewise, if there is no row with such row label , then Python adds new row with this row label and assigns given values to

all its columns. But the columns of this new row have the same given value.

(c) If you want to add a new column that has different values for all its rows, then you can assign the data values for each

row of the column in form of a l ist, e.g.

 <DF Object>[<column name>] = [<value>, <value>, ……]

Example:

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {'Population' : population , 'Avg. Income' : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print(dtf2)

print("==Adding Column==")

dtf2['density']=1219

print(dtf2)

print("==Adding Row==")

dtf2.at['Bangalore', :] = 1200

print(dtf2)

print("==Adding Column with different values==")

dtf2['density']= [1500, 1219 , 1630, 1050, 1100]

print(dtf2)

Output:

P a g e 41 | 64

7. Deleting Columns and rows

To delete a column, you use del statement as this :

 del <Df object>[<column name>]

To delete rows from a dataframe, you can use :

 <DF>.drop(<DF object>.index[[index value(s)]])

e.g.

import numpy as np

import pandas as pd

population=pd.Series([10927986,12691836,4631392,4328063],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

AvgIncome = pd.Series([7216781092,8508781269,4226785362,5261784321],\

 index=['Delhi', 'Mumbai','Kolkata','Chennai'])

dict2 = {'Population' : populati on , 'Avg. Income' : AvgIncome}

dtf2 = pd.DataFrame(dict2)

print("Dataframe before deletion of column")

dtf2['density']= [1500, 1219 , 1630, 1050]

print(dtf2)

print("Dataframe after deletion of column")

del dtf2['density']

print(dtf2)

print("Dataframe after deletion of first and third row")

print(dtf2.drop(dtf2.index[[0,2]]))

Descriptive Statistics with Pandas

sal_df

1. Functions min() and max()

 The min() and max() functions find out the minimum or maximum value respectively.

 The syntax for using min() and max() is :

 <dataframe>.min(axis=0 or 1 , skipna = True or False , numeric_only = True or False)

P a g e 42 | 64

 <dataframe>.max(axis=0 or 1 , skipna = True or False , numeric_only = True or False)

 axis = 0 (default) minimum calculated along the columns.

 axis = 1 minimum calculated along the rows.

 skipna = (True or False) Exclude NA/null values when computing result

 numeric_only = (True or False) Include only float, int , boolean columns. If None, will attempt to use

everything, then use only numeric data.

 e.g.1

 e.g. 2. sal_df.min(axis=1, skipna=False)

e.g. 3. sal_df.max(axis=0, skipna=False)

2. Functions mode() , mean() , median()

 Mode()

 It returns the mode value (i.e., the value that appears most often) from a set of values.

 The Syntax() for using mode() is:

 <dataframe>.mode(axis=0 , numeric_only=False)

 The mode() gets the mode(s) of each element along the axis selected.

 Mean()

 It returns the computed mean(average) from a set of values.

 The syntax() for using mean() is :

 <dataframe>.mean(axis=0 or 1 , skipna = True or False , numeric_only = True or False)

 Median()

 It returns the middle number from a set of numbers.

 The syntax() for using mean() is :

 <dataframe>.median(axis=0 or 1 , skipna = True or False , numeric_only = True or False)

e.g.1.

P a g e 43 | 64

e.g.2. sal_df.mean(axis=1, skipna=False)

3. Functions count() and sum()

 count()

 It counts the non-NA entries for each row or column.

 The Syntax for using count() is :

 <dataframe>.count(axis=0 or 1 , numeric_only=True or False)

 sum()

 It returns the sum of the values for the requested axis.

 The Syntax for using sum() is:

 <dataframe>.sum(axis=0 or 1 , skipna = True or False , numeric_only = True or False, min_count=0)

 min_count – the required number of valid values to perform the operation , default value is 0.

 e.g.

P a g e 44 | 64

5. Functions quantile() and var()

 The qunatile() function returns the values at the given quantiles over requested axis(axis 0 or 1).

 Quantile

- These are points in a distribution that relate to the rank order of values in that distribution.

- The quantile of a value is the fraction of observations less than or equal to the value.

 Quartiles:

- Lower Quartile (Q1) has one-fourth of data values at or below it(middle of smaller half)

- Upper Quartile (Q3) has three-fourth of data values at or below it(middle of larger half)

- Interquartile range(IQR) = Q3 – Q2

- The only 2-quantile is called the median.

- The 3-quantiles are called tertiles or terciles.

- The 4-quantiles are called quartiles.

 The Syntax of quantile() function

 <dataframe>.quantile(q=0.5 , axis = 0 or 1 , numeric_only=True or False)

 Parameters:

 q – float or array l ike , default 0.5 (50% quantile). 0<=q<=1, the quantile(s) to compute.

- If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of

self, and the values are the quantiles.

- If q is a float , a Series will be returned where the index is the columns of self and the values are the

quantiles.

e.g.

P a g e 45 | 64

 var() function

 It computes variance and returns unbiased variance over requested axis.

 The syntax for using the var() function is:

 <dataframe>.var(axis= 0 or 1 , skipna = True or False , numeric_only=True or False)

 e.g.

Applying Functions on a Subset of Dataframe

Sometimes, you need to apply a function on a selective column or a row or a subset of the data frame.

 Applying Functions on a column of a DataFrame

 Applying Functions on Multiple Columns of a Dataframe

 Applying Functions on a Row of a Dataframe

 Applying Functions on a Range of Rows of a Dataframe

P a g e 46 | 64

 Applying functions to a subset of the Dataframes

Advanced Operations on Dataframe

1. Pivoting 2. Sorting 3. Aggregation

Pivoting

 Pivoting technique rearranges the data from rows and columns, by possibly aggregating data from multiple

sources, in a report form (with rows transferred to columns) so that data can be viewed in a different perspective.

 In simplest term, the pivoting means summarising the data in a way to make understanding of descriptive data

easier. For example, consider the following data:

 Using pivot() function

P a g e 47 | 64

 You can skip the values argument, and if you skip the values argument, it will consider the rest of the columns(not

mentioned in index and columns arguments) for values automatically. E.g.

 Error while using pivot()

 Consider the following DataFrame df1:

P a g e 48 | 64

 If we try to use pivot() for the above data frame:

 df1.pivot(index= “Tutor”, Columns = “Country”)

 it will give error as “Index contains duplicate entries, cannot reshape”.

 E.g. Let us consider one Tutor say Tahira’s entries.

 If you try to create a row for the tutor Tahira from above data with columns as Country:

 Therefore, with pivot(), if there are multiple entries for a columns value for the same value for index(row), it

leads to error. Hence,before you use pivot(), you should ensure that the data does not have rows with

duplicate values for the specified columns.

Using pivot_table() Function

 For data having multiple values for same row and column combination, you can use another pivoting function –

the pivot-table() function.

 It is different from the pivot() function in following ways:

1. It does not raise error for multiple entries of a row, column combination.

2. It aggregates the multiple entries present for a row-column combination; you need to specify what type of

aggregation you want(sum, mean, etc.)

 Syntax:

P a g e 49 | 64

 E.g.

*You can use any aggregate function for aggfun argument (i.e. , min , max , mode , median , mean , count etc.)

E.g.2. Considering Dataframe df1, compute total classes per tutor.

E.g.3. Considering Dataframe df1, computer number of countries (count) per tutor.

Notice, for index Tahira and

column USA, the mean of 2

va lues (28 , 36) has been

given here.

P a g e 50 | 64

E.g.4. Considering Dataframe df1, compute total classes by country.

E.g.5. Considering Dataframe df1, compute total classes on two field, Tutor and country wise.

Sorting

- It refers to arranging values in a particular order.

- The values can be sorted on the basis of a specific column or columns and can be ascending or descending order.

- Syntax:

 <dataframe>.sort_values(by , axis = 0 or 1 , ascending = True , inplace = False , na_pos ition = ‘first’ or ‘last’)

Parameters:

by - Name or l ist of names to sort by.

ascending – default True , if False, then sorting in descending order.

inplace – bool , default False ; if True, perform operation in-place.

na_position – first or last , default last ; first puts NaNs at the beginning, last puts NaNs at the end.

P a g e 51 | 64

Aggregation

- With large amount of data, most often we need to aggregate data so as to analyse it effectively.

- Pandas offers many aggregate functions, using which you can aggregate data and get summary statistics of the data.

P a g e 52 | 64

1. The mad() function

- It is used to calculate the mean absolute deviation of the values for the requested axis.

- The Mean Absolute Deviation (MAD) of a set of data is the average distance between each data value and the

mean.

- Syntax:

 <dataframe>.mad(axis=None , skipna = True or False)

 Parameters :

 axis = 0(along columns) or 1(along axis)

 skipna = default True ; Exclude NA/null values.

- E.g. sal_df.mad(axis =1) – finding MAD along the rows.

 sal_df.mad() - finding MAD along the columns.

2. The std() function

- It calculates the standard deviation of a given set of numbers.

- E.g. sal_df.std() ,

 sal_df.std(axis = 1)

Creating Histogram

- A Histogram is a plot that lets you discover, and, show, the underlying frequency distribution (shape) of a set of

continuous data.

- Consider the following histogram that has been computed using the following dataset containing ages of 20 people.

- Unlike a bar chart, there are no “gaps” between the bars(although some bars might be “absent” reflecting no

frequencies). This is because a histogram represents a continuous data set, and as such, there are no gaps in the data.

- To create a histogram from a dataframe, you can use hist() function of dataframe, which draws one histogram of the

DataFrame’s columns.

- Syntax:

 Dataframe.hist(column=None, by=None , grid = True , bins = 10)

Parameters:

 column – string or sequence ; if passed will be used to l imit data to a subset of columns.

P a g e 53 | 64

 by – used to form histograms for separate groups.

 grid – default True ; whether to show axis grid l ines.

 bins – default 10 ; Number of histogram bins to be used.

- E.g. df1.hist() -- by default creates histogram for all numeric columns.

 df1.hist(column=’Classes’) – Argument ‘column’ specifies the column for which histogram is to be created.

Function Application

- It means that a function(a l ibrary function or user defined function) may be applied on a dataframe in multiple ways:

(a) on the whole dataframe.

(b) row-wise or column wise

(c) on individual elements, i .e., element-wise

- For above mentioned three types of function application, Pandas offers following three functions:

(a) pipe() – dataframe wise function application

(b) apply() – row-wise/column wise function application

(c) applymap() – individual element wise function application

The pipe() function

- A pipe is a technique for passing information from one program process to another where one command or function’s

output/result is taken as input for another command/function.

- The pipe() function of pandas does the same. General form of doing this is the sandwich style of invoking functions.

 e.g. power(sqrt(n) * 2)

 - The piping of functions through pipe() basically means the chaining of function in the order they are executed. The

pipe() works l ike this:

- Syntax for using pipe() function:

<dataframe>.pipe(func , *args)

Parameters:

 func – function name to be applied on the dataframe with the provided args.

 args – optional,positional arguments passed into func.

P a g e 54 | 64

- When pipe() function applied on a dataframe, it will return a DataFrame and when applied on numbers, it will return

numbers. Consider following examples:

The apply() and applymap() functions

1. apply() is a series function, so it applies the given function to one row or one column of the dataframe.

2. applymap() is an element function, so it applies the given function to each individual element, separately – without

taking into account other elements.

- The syntax for using apply() is :

- The syntax for using applymap() is :

- e.g.

P a g e 55 | 64

- For apply(), be default, the axis is 0, i .e., the function is applied on individual columns. To apply the function row-wise,

you may write:

- e.g.2. numpy.cumsum(), the cumulative sum function which works l ike this : sum of elements so far, i .e., for a column:

P a g e 56 | 64

when the series function numpy.cumsum is used with apply() and applymap():

- for apply() the function name should be a Series or array function, i.e., a function that works with Series type objects. If

you give name of a single element function as argument (e.g. srqt), then the function will be applied to all elements

individually and not to a row or a column and the result will be same as that of a the applymap().

Function groupby()

- Within a dataframe, based on a field’s values, we can group the data. In simple words, the duplicate values in the same field

are grouped together to form groups. E.g. from dataframe df1 (on page no. 20), we can for creating Tutor wise groups:

 All the rows having Tutor as Tahira will be clubbed to form Tahira group.

 All the rows having Tutor as Anusha will be clubbed to form Anusha group.

 All the rows having Tutor as Gurjyot will be clubbed to form Gurjyot group and so on.

- The syntax of groupby() is :

 <dataframe>.groupby(by=None , axis = 0)

by – labels or l ist of labels to be used for grouping.

axis – 0 (for columns) , 1 (for rows)

- The groupby() creates the groups internally and does not display the grouped data by default , e.g.

P a g e 57 | 64

- You can store the GroupBy object in a variable name and then use following attributes and functions to get

information about groups or to display groups:

- Example:

Grouping on Multiple columns

- For instance, you want to create groups for Tutors and for each tutor group, a country-wise subgroup, so you

should write groupby() as:

 gdf2=df1. groupby([‘Tutor’, ‘Country’])

- Now you can apply all the group attributes and functions on the groupby object gdf2 :

P a g e 58 | 64

- But while using get_group(), you need to pass all the values of group-columns in a tuple. The passed values

based group must exist in the groupby object , otherwise Python will give error.

Aggregation via groupby()

- The agg() method aggregates the data of the dataframe using one or more operations over the specified axis. The

syntax for using agg() is :

 <dataframe>.agg(func , axis =0)

 func – function, str or l ist

 axis - 0 or 1

- E.g.

P a g e 59 | 64

The transform() function

- This function transforms the aggregate data by repeating the summary result for each row of the group and makes the

result have the same shape as original data and thus the result of transform can be combined with the dataframe

easily.E.g.

- The transform() function’s output can now be added as columns to the dataframe. To add one column, you need to

first use transform for one column at a time, i.e. as shown below:

P a g e 60 | 64

- Now you can save the transformed result in a new column.

Reindexing and Altering Labels

- Index refers to lables of axis 0 , i .e., row labels and columns refers to the labels of axis 1 i.e., column labels.

- There are methods to rearrange and rename indexes or column labels :

1. rename() – A method that simply renames the index and/or column labels in a dataframe.

2. reindex() – A method that can specify the new order of existing indexes and column labels, and/or also create

new indexes/column labels.

3. reindex_like() – A method for creating indexes/column-labels based on other dataframe object.

1. The rename() method

- This function renames the existing indexes/column-labels in a dataframe.

- The old and new index/column labels are to be provided in the form of a dictionary where keys are the old

indexes/row labels, and the values are the new names for the same, e.g.

{‘Qtr1’ : 1 , ‘Qtr2’ : 2 , ……. }

The above dictionary implies that old index/column-label namely ‘Qtr1’ should be now renamed as 1, ‘Qtr2’ should be

renamed as 2 , and so on.

P a g e 61 | 64

- Syntax :

<dataframe>.rename(index=None , columns = None , inplace=False)

 or

 <dataframe>.rename({dictionary with old and new labels}, axis = 0 or 1)

- E.g.

2. The reindex() method

- This function is used to change the order or existing indices/labels.

- Syntax:

 Dataframe.reindex(index=None, columns=None , fi l l_value=nan)

 Or

Dataframe.reindex([list of rearranged index/column labels] , axis = 0 or 1)

- e.g.

P a g e 62 | 64

An alternate command for the above result will be:

Reordering as well as adding/deleting indexes/labels

- Existing row-indices/column-labels are reordered as per given order and non-existing row-indexes/column-labels

create new rows/columns and by default NaN values are fi l led in them.

- e.g.

Specifying fill values for new rows/columns

- By using argument fill_value, you can specify which will be fi l led in the newly added row/column. In the absence of

fill_value argument, the new row/column is fi l led with NaN.

- E.g.

P a g e 63 | 64

3. The reindex_like() method

- This function rearrange the row/column labels as per the row/ column labels of some other dataframe.

- This function does the following things:

(a) If the current dataframe has some matching row-indexes/column-labels as the passed dataframe, then retain the

index/label and its data.

(b) If the current dataframe has some row-indexes/column-labels in it, which are not in the passed dataframe, drop

them.

(c) If the current dataframe does not have some row-indexes/column-labels which are in the passed dataframe, then

add them to current dataframe with value as NaN.

(d) The reindex_like() ensure that the current dataframe object conforms to the same indexes/labels on all axes.

- Syntax:

<dataframe>.reindex_like(other dataframe)

- E.g. consider the two dataframes:

 If we issue command as:

 ndf2.reindex_like(sal_df)

 output will be:

P a g e 64 | 64

